Skip to main content

Table 4 Classification results of Input variables using machine learning algorithms

From: Use of machine learning to predict creativity among nurses: a multidisciplinary approach

Learner

Recall

Precision

F-measure

ROC

Humble Leadership

Naïve Bayes

0.824

0.811

0.817

0.787

IBk

0.816

0.810

0.813

0.784

K-Star

0.896

0.794

0.842

0.784

RandomTree

0.808

0.802

0.805

0.714

Psychological Safety

Naïve Bayes

0.995

0.995

0.994

0.990

IBk

0.861

0.833

0.847

0.834

K-Star

0.848

0.949

0.896

0.975

RandomTree

0.824

0.924

0.871

0.910

Gender (Female)

Naïve Bayes

0.985

0.977

0.981

0.984

IBk

0.947

0.919

0.932

0.882

K-Star

0.756

0.728

0.742

0.606

RandomTree

0.885

0.879

0.882

0.809

Time Commitment (Full Time)

Naïve Bayes

0.987

0.981

0.984

0.988

IBk

0.968

0.950

0.959

0.884

K-Star

0.892

0.860

0.876

0.760

RandomTree

0.975

0.957

0.966

0.881

Tenure (2- Less than one year & 6–10 years or more)

Naïve Bayes

0.962

0.962

0.962

0.997

IBk

0.558

0.690

0.617

0.766

K-Star

0.662

0.714

0.687

0.800

RandomTree

0.735

0.694

0.714

0.778

Age (1- Less Than 25 Years)

Naïve Bayes

0.923

1.000

0.960

0.993

IBk

0.673

0.778

0.722

0.823

K-Star

0.673

0.660

0.667

0.859

RandomTree

0.788

0.774

0.781

0.851